On simultaneous approximation of algebraic numbers

نویسندگان

چکیده

Let Γ ⊂ Q ¯ × $\Gamma \subset \overline{\mathbb {Q}}^{\times }$ be a finitely generated multiplicative group of algebraic numbers. α 1 , … r ∈ $\alpha _1,\ldots ,\alpha _r\in {Q}}^\times$ numbers which are $\mathbb {Q}$ -linearly independent and let ε > 0 $\epsilon >0$ given real number. One the main results that we prove in this article is as follows: There exist only many tuples ( u q p ) Z + $(u, q, p_1,\ldots ,p_r)\in \Gamma \times \mathbb {Z}^{r+1}$ with d = [ : ] $d [\mathbb {Q}(u):\mathbb {Q}]$ for some integer ⩾ $d\geqslant 1$ satisfying | i $|\alpha _i u|>1$ u$ not pseudo-Pisot number { } $i\in \lbrace 1, \ldots r\rbrace$ < j − H \begin{equation*} \hspace*{4pc}0<|\alpha _j qu-p_j|<\frac{1}{H^\epsilon (u)|q|^{\frac{d}{r}+\varepsilon }} \end{equation*} all integers 2 $j 2,\ldots r$ where $H(u)$ absolute Weil height. In particular, when $r =1$ result was proved by Corvaja Zannier [Acta Math. 193 (2004), 175–191]. As an application our result, also transcendence criterion generalizes Hančl, Kolouch, Pulcerová, Štěpnička [Czech. J. 62 (2012), no. 3, 613–623]. The proofs rely on clever use subspace theorem underlying ideas from work Zannier.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Simultaneous Approximation of Logarithms of Algebraic Numbers

Recently, close connections have been established between simultaneous diophantine approximation and algebraic independence. A survey of this topic is given by M. Laurent in these proceedings [7]. These connections are one of the main motivations to investigate systematically the question of algebraic approximation to transcendental numbers. In view of the applications to algebraic independence...

متن کامل

Simultaneous Approximation to Pairs of Algebraic Numbers

The author uses an elementary lemma on primes dividing binomial coefficients and estimates for primes in arithmetic progressions to sharpen a theorem of J. Rickert on simultaneous approximation to pairs of algebraic numbers. In particular, it is proven that max {∣∣∣∣√2− p1 q ∣∣∣∣ , ∣∣∣∣√3− p2 q ∣∣∣∣} > 10−10q−1.8161 for p1, p2 and q integral. Applications of these estimates are briefly discussed.

متن کامل

Effective simultaneous approximation of complex numbers by conjugate algebraic integers

We study effectively the simultaneous approximation of n − 1 different complex numbers by conjugate algebraic integers of degree n over Z( √ −1). This is a refinement of a result of Motzkin [2] (see also [3], p. 50) who has no estimate for the remaining conjugate. If the n−1 different complex numbers lie symmetrically about the real axis, then Z( √ −1) can be replaced by Z. In Section 1 we prov...

متن کامل

On the Approximation to Algebraic Numbers by Algebraic Numbers

Let n be a positive integer. Let ξ be an algebraic real number of degree greater than n. It follows from a deep result of W. M. Schmidt that, for every positive real number ε, there are infinitely many algebraic numbers α of degree at most n such that |ξ−α| < H(α)−n−1+ε, where H(α) denotes the näıve height of α. We sharpen this result by replacing ε by a function H 7→ ε(H) that tends to zero wh...

متن کامل

Fuzzy Best Simultaneous Approximation of a Finite Numbers of Functions

Fuzzy best simultaneous approximation of a finite number of functions is considered. For this purpose, a fuzzy norm on $Cleft (X, Y right )$ and its fuzzy dual space and also the  set of subgradients of a fuzzy norm are introduced. Necessary case of a proved theorem about characterization of simultaneous approximation will be extended to the fuzzy case.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematika

سال: 2022

ISSN: ['2041-7942', '0025-5793']

DOI: https://doi.org/10.1112/mtk.12161